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We propose and study a hierarchical algorithm to generate graphs having a predetermined distribution of
cliques, the fully connected subgraphs. The construction mechanism may be either random or incorporate
preferential attachment. We evaluate the statistical properties of the graphs generated, such as the degree
distribution and network diameters, and compare them to some real-world graphs.
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I. INTRODUCTION

The structural and statistical properties of networks have
been studied intensively over the past decade �1,2�, due to
their ubiquitous importance in technology, different realms
of life, and complex system theory in general �3�. With time
it was realized that the topological properties of real-world
networks often transcend the universality class of both the
straightforward, all-random Erdös-Rényi graph �4�, as well
as that of random networks with arbitrary degree distribu-
tions �5�.

Many real-world networks have a well defined commu-
nity structure �6�. A community is, loosely speaking, a sub-
graph that has an intrasubgraph link density that is substan-
tially above the average link density of the whole network.
The community with link density equal to 1 is denoted in
graph theory as a “clique.” A clique is a fully interconnected
subgraph, the smallest clique having just two vertices.

A clique is also a specific realization of a graph motif, i.e.,
of subgraphs with definite topologies �7,8�, and of k-cores,
viz., subgraphs with at least k interconnections �9�. In a re-
lated work, Derenyi et al. introduced the notion of clique
percolation in the context of overlapping graph communities
�10�. For scale-free graphs, having a degree distribution pk
�k−�, the second moment �k2� diverges for the important
case 2���3 and finite numbers of cliques of arbitrary size
emerge �11�.

For any graph, one can define a characteristic clique dis-
tribution PC�S�, viz., the probability for a clique of size S to
occur. A loopless graph exclusively has cliques of size 2 with
PC�S�=�S,2 and the number of three-site cliques is related to
the standard clustering coefficient �1,2�. The clustering coef-
ficient C is a normalized measure for the occurrence of three-
site loops, with every three-site loop being part of at least
one clique of size S�3.

It is therefore of interest to investigate the clique distribu-
tion of real-world graphs and to consider the problem of
constructing graphs with specific clique distributions.

II. ALGORITHM

We consider a given set of cliques C1 , . . . ,CM containing
Si=S�Ci� sites each, an instantitation of a certain clique dis-
tribution PC�S�. We presume the clique set to be monotoni-
cally ordered,

Si � Si+1, i = 1, . . . ,M − 1, �1�

as illustrated in Fig. 1. We study the task to generate recur-
sively a dense and connected graph out of the M cliques �Ci	
in such a way that the final graph has exactly the same dis-
tribution Pc�S� of fully connected subgraphs, viz., of cliques.
In Fig. 1, we illustrate the simplest procedure for solving this
task, by concatenating the cliques C1 ,C2 , . . . via a single
common vertex between two consecutive cliques.

Let us digress briefly and consider what would have hap-
pened if we had used sites 4 and 7, together with a new site
9 to attach the S3=3 clique in the third step for the case
illustrated in Fig. 1. In this case, sites 4 and 7 would be
connected and a spurious three-site clique, namely �4,5,7�,
would have been generated. A thoughtless attachment of
cliques in general, therefore, generates spurious additional
cliques, resulting in an uncontrolled clique distribution for
the final graph.

A. Hierarchical algorithm

In general, one can join two cliques of sizes S1 and S2 via
common vertices. The minimal number of common vertices
is one, the maximal is

min�S1,S2� − 1. �2�

Using more common sites, namely more than min�S1 ,S2�,
would result in the destruction of the smaller clique. We can
then formulate a class of hierarchical algorithms conserving

FIG. 1. �Color online� Illustration of a clique-conserving algo-
rithm generating a connected graph out of a given set of cliques.
Starting with a five-site clique �1,2,3,4,5� in step one, a four-site
clique �5,6,7,8� and a three-site clique �8,9,10� are added in steps
two and three via a single common vertex.
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a given, arbitrary but ordered, via Eq. �1�, initial clique dis-
tribution:

�i� At step m=1, . . . ,M one adds the clique Cm with Sm

=S�Cm� sites. One starts by selecting a number S̃m� �1,Sm

−1�. Here we will mostly concentrate on the case S̃m=Sm

−1.

�ii� Next one selects recursively S̃m mutually intercon-
nected vertices out of the graph segment constructed in the
previous m−1 steps. The new clique is then added by mutu-

ally connecting Sm− S̃m new sites among themselves and with

the S̃m selected sites of the existing graph segment.

We call the choice S̃m=Sm−1 the “dense hierarchical al-
gorithm;” it is illustrated in Fig. 2. Here we will study ex-
clusively the dense algorithm, which results in quite dense

networks. The opposite limit, namely the case S̃m=1 in step
�i� of the hierarchical algorithm, is illustrated in Fig. 1.

Starting with M cliques, the dense hierarchical algorithm
generates a network containing N sites in its final state, with

N = S1 + �M − 1� , �3�

with S1 being the size of the starting clique, which is also the
largest. This is so because exactly one new vertex is added at
each of the �M −1� steps.

B. Random versus preferential attachment

The selection of the S̃m vertices in step �ii� can be done
either randomly, by preferential attachment, or by other
rules. When considering preferential attachment, we first se-
lect a single vertex i with an attachment probability ��ki�
proportional to the vertex-degree ki,

��ki� =
ki


 j�kj�
�4�

�linear preferential attachment�. We then select recursively

S̃m−1 vertices out of the neighbors of i via preferential at-
tachment. The set of possible vertices is given, at every step
of this recursive selection process, by the set of vertices
linked to all sites previously selected. Note that the ordering
�1� of the initial clique distribution is a precondition for the
hierarchical algorithm to function.

C. Decimation algorithm

For further reference we briefly mention a second clique-
conserving algorithm for network construction via vertex
decimation. Starting with an initial network of M uncon-
nected cliques C1 , . . . ,CM, one selects pairs of unconnected
vertices either randomly or via preferential attachment. One
then attempts a decimation by merging the two selected ver-
tices into a single vertex. One then calculates the clique dis-
tribution of the new network, which has one less site. If the
new clique distribution is identical to the original distribu-
tion, the decimation is accepted, or else it is rejected.

III. SIMULATION RESULTS

We have studied the properties of the hierarchical clique-
conserving graph-generation algorithm extensively using nu-
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FIG. 3. �Color online� The degree distributions pk for graphs
with scale-free clique distribution, compare Eq. �5�, and an expo-
nent �=2.6. Blue squares are for a system of M �105 cliques, green
stars and red diamonds show systems for 104 and 103 cliques, re-
spectively. The data are obtained by averaging over 1000 /263 /19
realizations for PC�S� for clique numbers M equal to 103 /104 /105.
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FIG. 4. �Color online� The degree distribution pk for graphs
having a scale-free clique distribution with �=2.6 and M �104

cliques. Shown are results both for random and preferential attach-
ment with lines indicating the respective slopes −2.7 �random� and
−2.5 �preferential�.

FIG. 2. �Color online� Illustration of the dense hierarchical al-
gorithm for generating dense graphs out of a given set of cliques.
Starting with the largest clique �1,2,3,4,5�, here of size S1=5, in
step 1, cliques of size Si �i=2,3 , . . . � are added consecutively step
by step by adding one additional vertex at each step and using Si

−1 vertices from a previously added clique. The second clique is
here �3,4,5,6� and the third clique �4,6,7�. Both random and prefer-
ential attachment may be used.

GREGOR KACZOR AND CLAUDIUS GROS PHYSICAL REVIEW E 78, 016107 �2008�

016107-2



merical results, evaluating their respective statistical proper-
ties and comparing them to some selected real-world graph.

A. Initial clique distribution

The hierarchical graph generation algorithm conserves per
construction the initial clique distribution PC�S�. We have
studied two cases. In Sec. IV, we will discuss the results
obtained by using the measured clique distribution of real-
world networks for PC�S�. Here we will concentrate on some
model clique distributions, in particular of scale-free form,

PC�S� � �1

S
�

, � � 2. �5�

We performed simulations for various exponents � and
scale-free clique-distributions containing a total number M
of cliques. For the simulations, a cutoff S1 needs to be cho-
sen for the scale-free distribution �5�, i.e., the maximal
clique-size S1. The expected number NS1

�S� of cliques is then

NS1
�S� = �1

S
� M


S�=1
S1 �1/S���

, �6�

where M is the total number of cliques. We selected S1 by the
condition

NS1
�S1� � 1, NS1

�S1 + 1� � 1, �7�

viz., there is at least one clique of size S1 present on average.
We compared results obtained for M ranging typical from
103 to 105 in order to extract scaling properties in the large-
network limit. In order to extract reliable statistical proper-
ties, the results were averaged over Nreal different random
realizations.

When selecting the value S1 for the maximal clique size,
one discards all cliques with sizes S�S1. This is admissible
when the percentage of discarded cliques is small. With the
criteria �7�, the percentage of discarded cliques vanishes in
the thermodynamic limit M→�. For the system of order
104 ,105, the percentage of discarded is well below 1%.

B. System-size analysis

In Fig. 3, we present the degree distribution pk for graphs
with a scale-free clique distribution �5� and an exponent �
=2.6, generated through the hierarchical algorithm with pref-
erential attachment. The degree distribution results from av-
eraging Nreal=1000,263,10 realizations for clique distribu-
tions containing M �103 ,104 ,105 cliques. We note that the
degree distribution approaches a well defined curve for the
thermodynamic limit M→�.

The degree distributions shown in Fig. 3 have bumps at
high degrees for finite numbers of cliques M. This is due to
the fact that the algorithm starts by incorporating the large
cliques first so that vertices with an high initial degree see it
further increased via the preferential attachment during the
construction process. This effect vanishes in the thermody-
namic limit as the probability of a given vertex to be chosen
as a part of a new clique decreases with system size.

The statistical analysis of the networks presented in Fig. 3
is given in Table I; the number of cliques M and the number
of vertices N obey the relation �3� valid for the dense hier-
archical algorithm. The resulting degree distribution ap-
proaches within the numerical errors a scale-free functional
dependence with an exponent �m� approximately given by the
exponent �=2.6 of the conserved clique distribution PC�S�.

TABLE II. Statistical properties of graphs �compare Fig. 5� containing M �105 cliques generated by the
hierarchical algorithm with preferential attachment. � denotes the scaling exponent for the clique distribution
Pc�S�, C the clustering coefficient, � the average path length, �	� the average degree, D is the network
diameter, d is the link density, and N the total number of vertices. m is the slope of the degree distribution pk

measured for k� �10,100�.

� C � D �	� d N m

2.1 0.51 3.2 9.2 9.9 0.000098 100099 −2.1

2.6 0.36 3.4 9.8 5.8 0.000058 100096 −2.4

3.2 0.23 3.7 11.3 3.8 0.000038 100042 −3.1

4.2 0.10 4.1 13.4 2.8 0.000027 100020 −3.2

TABLE I. Statistical properties of graphs �compare Fig. 3� containing M �103 ,104 ,105 cliques generated
by the hierarchical algorithm with preferential attachment, using a scale-free clique distribution �5�, with an
exponent �=2.6. C is the clustering coefficient, � the average path length, �	� the average degree, D the
network diameter, d the link density, and N the total number of vertices. m is the slope of the degree
distribution pk measured for k� �10,40� for M �103 and k� �10,100� for M �104 ,105.

M C � D �	� d N m

986 0.34 3.2 7.5 5.1 0.00508 1007 −2.6

9979 0.36 3.3 8.8 5.7 0.00056 10032 −2.7

99999 0.37 3.4 9.8 5.8 0.000058 100096 −2.4
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In Fig. 4, we compare the degree distribution between
construction rules with preferential and random attachment,
respectively. The difference is quite small in the region of
small to intermediate degrees k, where the finite-size correc-
tions are minor. This is because of the algorithmic restriction
that only common neighbors of the already processed verti-
ces can be used to construct a clique iteratively. This restric-
tion decreases the number of vertices available for the pref-
erential attachment and results in a similar degree
distribution, which is, however, slightly different from the
ideal scale-free line.

C. Dependency on the scaling exponent

We have studied the properties of the graphs generated by
the hierarchical algorithm for scale-free clique distributions
PC�S� and several scaling exponents �. We have analyzed
the corresponding graphs as a function of clique numbers
M �103 ,104 ,105, averaging over several clique-distribution
realizations. The resulting degree distributions are shown in
Fig. 5 for the case M �105, the corresponding statistical
analysis in Table II. In order to estimate the finite-size cor-
rections, we present in Table III the corresponding results for

M �104. We note, in particular, a good agreement in the
estimates for the scaling exponent �m� of the resulting degree
distribution.

Interestingly enough, the exponent �m� for the degree dis-
tribution of the graph generated by the hierarchical algorithm
with preferential attachment saturates at �3.1, close to the
value 3 expected for the standard preferential attachment al-
gorithm �1�. When ��3, the large tail of the degree distri-
bution stemming directly from the clique distribution domi-
nates the resulting exponent �m� for the degree distribution,
but fails to do so for ��3, when the preferential attachment
mechanism dominates the generation of the fat tail.

Next, we comment on the size of the network diameter D
of the generated graphs. With increasing �, we observe an
increasing average path length � and an increasing average
diameter D while the clustering coefficient C decreases. The
network diameter is intuitively affected by the number of
low-degree vertices. A larger number of low-degree vertices
for degree distributions of identical functional dependences
generally results in a bigger network diameter. Alternatively,
one may consider the number of trivial cliques, namely those
with size S=2, viz., edges not forming part of any larger
clique. They tend to connect to low-degree vertices, since
two connected high-degree vertices would have a higher
probability to belong to cliques of size 3 or larger.

In order to examine the influence of these trivial cliques
on the network diameter, we have eliminated, from the graph
generated by the hierarchical algorithm with M �104 and
�=2.1,2.6,3.2,4.2, all cliques of size S=2. The statistical
properties of the resulting graph are given in Table III. The
network diameter � decreases substantially and the clustering
C increases. We note that the scaling exponent m for the
degree distribution remains unaffected, as it depends on the
vertices with large degrees only. This result is nevertheless
somewhat surprising, in view of the dramatic reduction in
the number of vertices N resulting from the decimation of all
trivial cliques.

IV. COMPARISON WITH REAL-WORLD DATA

We evaluated the clique distributions PC�S� for two real-
world networks, a protein-protein interaction network �13�
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FIG. 5. �Color online� The degree distribution for three scale-
free clique distributions with exponents �1=2.1 �maroon plus, 11
simulation runs�, �2=2.6 �red diamonds, 26 simulation runs�, and
�3=3.2 �yellow triangles, 15 simulation runs�, for M �105 cliques.

TABLE III. Top four rows: Statistical properties of graphs with M �104 cliques and various scaling
exponents � for the clique distribution PC�S�. C is the clustering coefficient, � the average path length, �	�
the average degree, D the network diameter, d the link density, N the total number of vertices, and m the slope
measured between degree 10 and 60. The degree distributions result from averaging Nreal

=86,263,866,306 realizations for clique distributions having �=2.1,2.6,3.2,4.2. Bottom four rows: The
same data as for the top four rows, but with all cliques of degree S=2 removed from the graphs.

� C � D �	� d N m

2.1 0.51 3.1 7.5 10.5 0.00104 10093 −2.0

2.6 0.36 3.4 8.8 5.6 0.00056 10032 −2.5

3.2 0.23 3.7 10.0 3.8 0.00038 10017 −2.9

4.2 0.10 4.1 11.8 2.7 0.00027 10007 −3.1

2.1 0.94 2.73 4.1 16.7 0.0028 5885 −2.0

2.6 0.92 2.77 4.5 10.0 0.0021 4625 −2.5

3.2 0.90 2.77 4.9 7.2 0.00206 3491 −3.0

4.2 0.97 2.74 5.0 5.5 0.0024 2207 −3.0
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and a WWW graph �12�. We then used the resulting clique
distributions PC�S� as the starting point for the hierarchical
algorithm with preferential attachment and compared the
generated graphs with the properties of the original real-
world networks �13�.

Figure 6 shows the clique and the degree distributions of
the respective original graphs, with their corresponding sta-
tistical properties given in Table IV. We note that the protein-
interaction graph contains cliques of up to ten sites, where a
typical clique size is slightly larger in the WWW net. The
scaling of the degree distribution pk is clearly observable for
the WWW net, but only indicative for the protein-interaction
networks, due to the limited number of vertices it contains.

In Table IV, we have also included the properties of the
graphs generated by the hierarchical algorithm using prefer-

ential attachment. The main difference between the gener-
ated networks analyzed in Table IV and those previously
discussed is the fact that they are not averaged over an en-
semble of realizations of a clique distribution. The reason is
that the exact experimental clique distributions for the
protein-interaction network and for the WWW network have
been taken as an input for the hierarchical algorithm, which
is per construction conserved with respect to the clique dis-
tribution.

Next we note two caveats with respect to the protein in-
teraction graph. First, it is not complete, being updated con-
tinuously as new experimental results become available �13�.
Secondly, the protein-interaction network contains uncon-
nected subsets of vertices. The largest component does not
encompass the entire graph but 8972 sites out of a total of
9362 vertices. We have used this largest component for the
data analysis.

While analyzing the data presented in Table IV, we note
substantial differences between the properties of the real-
world graphs with respect to the one generated by the hier-
archical clique-conserving algorithm. These differences in-
volve essentially all key statistical quantities, such as the
total number of vertices, the average degree, the network
diameter, and the large-k falloff of degree distribution.

This leaves us with two possible conclusions, the first
being that the clique distribution PC�S� is probably not a
good quantity for the purpose of characterizing a given
graph, at least in the two examples considered here. The
second is the possibility that an altogether different clique-
conserving algorithm may be needed for the clique distribu-
tion to be used as a characterizing quantity.

The data presented in Table IV were generated using the
hierarchical algorithm with preferential attachment, however,
as discussed above �see Fig. 4�, the difference between ran-
dom and preferential attachment is actually quite small for
clique distributions having a fat tail.

V. DISCUSSION

In this paper, we presented an algorithm, the hierarchical
algorithm, by which one can generate graphs having a pre-
determined distribution of cliques, viz., of fully connected
subgraphs. We have studied, in a first step, the degree distri-
bution of the resulting networks for scale-free clique distri-
bution as a function of the scaling exponent.

In a second step, we used two selected real-world graphs,
a protein-interaction network and a WWW network, and ex-
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FIG. 6. �Color online� Top figure: Clique distribution PC�S� of
the WWW data set �12� and Human Protein Protein Interaction
Database �HPPI��13�. The distributions have the exponents �www

=−5.5, �hppi=−6.2. The statistical properties are given in Table IV.
Bottom figure: Degree distribution pk of the same data shown in the
top figure. Continuous lines show the respective slope of mwww=
−2.8, mhppi=−2.5. The statistical properties are given in Table IV.

TABLE IV. Statistical properties of a HPPI and of a WWW graph. C is the clustering coefficient, � the
average path length, �	� the average degree, D the diameter, d the link density, N the total number of vertices,
and m the slope measured for k� �10,44� for the real data �k� �10,20� for the generated graph and k
� �10,100� for generated WWW data�.

Data Source C � D �	� d N m

HPPI real 0.11 4.3 14 7.8 0.00085 8972 −2.5

gener. 0.20 3.8 11 3.0 0.00016 25747 −3.5

WWW real 0.23 7.2 46 3.0 0.000009 325729 −2.8

gener. 0.27 3.751 12 4.1 0.0000086 475588 −3.6
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amined the relation between their degree and clique distribu-
tions relative to those of graphs generated via the hierarchi-
cal algorithm having the same respective clique distribution.
We find no good agreement, and this leads us to the conclu-

sion that either the clique distribution is insufficient for an
in-depth characterization of real-world networks, or that the
hierarchical algorithms need further development.

�1� R. Albert and A. Barabàsi, Rev. Mod. Phys. 74, 47 �2002�.
�2� S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079

�2002�.
�3� C. Gros, Complex and Adaptive Dynamical Systems, A Primer

�Springer, Berlin, 2007�.
�4� P. Erdös and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�5� M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.

E 64, 026118 �2001�.
�6� G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature 435, 814

�2005�.
�7� R. Milo et al., Network Motifs: Simple Building Blocks of

Complex Networks �2002�, Vol. 298, p. 824.

�8� A. Vazquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. N. Oltvai,
and A.-L. Barabasi, Proc. Natl. Acad. Sci. U.S.A. 101, 17940
�2004�.

�9� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.
Rev. Lett. 96, 040601 �2006�.

�10� I. Derenyi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94,
160202 �2005�.

�11� G. Bianconi and M. Marsili, Europhys. Lett. 74, 740 �2006�.
�12� R. Albert, H. Jeong, and A.-L. Barabási, Nature 401, 130

�1999�.
�13� S. Mathivanan et al., BMC Bioinf. 7 �Suppl. 5�, S19 �2006�.

GREGOR KACZOR AND CLAUDIUS GROS PHYSICAL REVIEW E 78, 016107 �2008�

016107-6


